ISSN 1600-5368

Bis(2-Amino-6-methylpyridinium) aquatetrabromidooxidorhenate(V) bromide

Andrzej Kochel

Faculty of Chemistry, University of Wrocław, 14 Joliot-Curie Street, 50-383 Wrocław, Poland Correspondence e-mail: garfild9@gazeta.pl

Received 7 September 2007; accepted 10 September 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.008 Å; R factor = 0.039; wR factor = 0.069; data-to-parameter ratio = 42.3.

The title compound, $(C_6H_9N_2)_2 \cdot [ReO(H_2O)Br_4] \cdot Br$, is a molecular salt incorporating rhenium(V)-containing oxoanions. The oxoanion shows a distorted trans-ReO₂Br₄ geometry. In the crystal structure, the component species are connected via $N-H\cdots$ Br and $O-H\cdots$ Br interactions.

Related literature

For related structures, see: Abram et al. (1996); Chiozzone et al. (2006); Kochel (2007). For synthetic background, see: Watt & Thompson (1963).

Experimental

Crystal data

 $(C_6H_9N_2)_2 \cdot [ReO(H_2O)Br_4] \cdot Br$ $M_r = 838.07$ Monoclinic, P21/c a = 11.996 (2) Å b = 12.154 (3) Å c = 18.206 (3) Å $\beta = 125.43 \ (2)^{\circ}$

Data collection

Kuma KM4 CCD diffractometer Absorption correction: numerical (CrysAlis RED; Oxford Diffraction, 2003) $T_{\rm min}=0.340,\ T_{\rm max}=0.563$

V = 2162.9 (7) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 14.87 \text{ mm}^-$ T = 100 (2) K $0.08\,\times\,0.08\,\times\,0.07$ mm

40507 measured reflections 10288 independent reflections 5873 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.080$

metal-organic compounds

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of
$wR(F^2) = 0.069$	independent and constrained
S = 0.92	refinement
10288 reflections	$\Delta \rho_{\rm max} = 2.13 \text{ e} \text{ Å}^{-3}$
243 parameters	$\Delta \rho_{\rm min} = -2.32 \text{ e} \text{ Å}^{-3}$
8 restraints	

Table 1 Selected bond lengths (Å).

Re1-O2	1.667 (3)	Re1-Br2	2.5141 (6)
Re1-O1	2.206 (3)	Re1-Br1	2.5223 (5)
Re1-Br3	2.5117 (6)	Re1-Br4	2.5254 (6)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdots Br5$	0.92 (3)	2.54 (5)	3.354 (4)	148 (5)
$O1 - H1W \cdots Br5^{i}$	0.95 (4)	2.25 (4)	3.176 (3)	165 (4)
$N2 - H2N \cdots Br1^{ii}$	0.92 (5)	2.76 (5)	3.573 (5)	148 (4)
$N2 - H2N \cdots Br4^{ii}$	0.92 (5)	2.91 (5)	3.424 (6)	117 (4)
$O1 - H2W \cdots Br5^{iii}$	0.95 (3)	2.28 (3)	3.225 (4)	170 (4)
$N2 - H3N \cdots Br5$	0.92 (2)	2.75 (4)	3.514 (4)	141 (3)
$N3 - H4N \cdots Br5^{iv}$ $N4 - H5N \cdots Br2^{v}$ $N4 - H6N \cdots Br4^{vi}$	0.92 (5)	2.42 (5)	3.273 (4)	154 (4)
	0.90 (5)	2.83 (5)	3.592 (6)	143 (4)
	0.92 (4)	2.79 (5)	3.647 (5)	155 (5)

Symmetry codes: (i) -x, -y+2, -z+1; (ii) $x, -y+\frac{3}{2}, z+\frac{1}{2}$; (iii) x-1, y, z-1; (iv) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (v) $x + 1, -y + \frac{3}{2}, z + \frac{1}{2}$; (vi) $-x, -y + \overline{1}, -z + \overline{1}$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); XP (Bruker, 1999); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2535).

References

Abram, U., Hubener, R., Alberta, R. & Schibili, R. (1996). Z. Anorg. Allg. Chem 622 813-818.

Bruker (1999). XP. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA. Chiozzone, R., Cuevas, A., Gonzales, R., Kremer, C., Armentano, D., De

Munno, G. & Faus, J. (2006). Inorg. Chim. Acta, 359, 2194-2200.

Kochel, A. (2007). Acta Cryst. E63, m1968.

Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Versions 1.171.30. Oxford Diffraction Poland, Wrocław, Poland.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Watt, G. W. & Thompson, R. J. (1963). Inorg. Synth. 7, 190-192.

supplementary materials

Acta Cryst. (2007). E63, m2533 [doi:10.1107/S1600536807044133]

Bis(2-Amino-6-methylpyridinium) aquatetrabromidooxidorhenate(V) bromide

A. Kochel

Comment

This paper reports the crystal structure of a molecular salt containing the $[Re^{V}O(H_2O)Br_4]^{-}$ anion. All atoms lie on general positions (Fig. 1). The $[ReO(H_2O)Br_4]^{-}$ anion in (I) shows a distorted *trans*-ReO₂Br₄ octahedral geometry about the central Re(V) ion (Table 1). The water molecule is weakly coordinated to rhenium at the base of octahedron with a Re—O distance of 2.206 (3) Å. The Re—Br bond lengths in (I) agree with those in related crystal structures (Abram *et al.*, 1996; Chiozzone *et al.*, 2006; Kochel, 2007).

In the crystal, the component species interact *via* N—H···Br and O—H···Br hydrogen bonds (Table 2), resulting in alternating layers of anions and cations perpendicular to [010] The shortest Re···Re distances in (I) are 6.819 (3) Å for Re1···Re1ⁱ (i = -x, -y + 2, -z + 1) and 8.546 (4) Å for Re1···Re2ⁱ (i = -x - 1, -y + 2, -z).

Experimental

 $(NH_4)_2ReBr_6$ was obtained by the method of Watt & Thompson (1963). A mixture of $(NH_4)_2ReBr_6$ (0.33 g) and 2-amino-6-methylpyridine (0.80 g) was dissolved in 50- ml of ethanol solution, which was heated at 323 K for 10 h followed by slow cooling. After the reaction the mixture colour was yellow–orange. The solution was filtered and the filtrate was left standing for evaporation. After five days, orange plates of (I) appeared. Anal. Calc for $C_{12}H_{20}Br_5N_4O_2Re$: C 17.19, H 2.57, N 6.68%; found C 16.34, H 2.30, N 6.54%. IR (KBr): 1195(*versus*), 1200(*s*), 990(*m*), 950(*s*), 1054(*m*), 980(*s*), 873(*m*), 810(*s*), 730(*m*), 310(*s*), 174(*m*), 159(*m*).

Refinement

The N– and O-bound H atoms were located in difference maps and their positions were freely refined with $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$. The C-bound H atoms were placed in idealized positions (C—H = 0.93–0.96 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(\text{methyl C})$.

The highest difference peak is 0.59Å from Re1. The deepest difference hole is 0.68Å from Re1.

Figures

Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).

Fig. 2. The crystal packing in (I).

Bis(2-Amino-6-methylpyridinium) aquatetrabromidooxidorhenate(V) bromide

Crystal data	
$(C_6H_9N_2)_2$ ·[ReO(H ₂ O)Br ₄]·Br	$F_{000} = 1544$
$M_r = 838.07$	$D_{\rm x} = 2.574 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 5614 reflections
a = 11.996 (2) Å	$\theta = 2.7 - 36.7^{\circ}$
b = 12.154 (3) Å	$\mu = 14.87 \text{ mm}^{-1}$
c = 18.206 (3) Å	T = 100 (2) K
$\beta = 125.43 \ (2)^{\circ}$	Prism, orange
V = 2162.9 (7) Å ³	$0.08\times0.08\times0.07~mm$
<i>Z</i> = 4	

Data collection

Kuma KM4 CCD diffractometer	10288 independent reflections
Radiation source: fine-focus sealed tube	5873 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.080$
T = 100(2) K	$\theta_{\text{max}} = 36.7^{\circ}$
ω scans	$\theta_{\min} = 2.7^{\circ}$
Absorption correction: numerical (CrysAlis [CrysAlis RED?]; Oxford Diffraction, 2003)	$h = -19 \rightarrow 19$
$T_{\min} = 0.340, \ T_{\max} = 0.563$	$k = -18 \rightarrow 20$
40507 measured reflections	$l = -30 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.069$	$w = 1/[\sigma^2(F_o^2) + (0.0236P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.92	$(\Delta/\sigma)_{\text{max}} = 0.001$
10288 reflections	$\Delta \rho_{max} = 2.13 \text{ e} \text{ Å}^{-3}$

243 parameters

 $\Delta \rho_{min} = -2.32 \text{ e } \text{\AA}^{-3}$ Extinction correction: none

8 restraints Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
N1	0.4220 (4)	0.6746 (3)	0.9044 (2)	0.0208 (7)
H1N	0.409 (5)	0.7471 (18)	0.911 (3)	0.025*
N2	0.1884 (4)	0.6673 (3)	0.8315 (3)	0.0324 (9)
H2N	0.104 (3)	0.634 (4)	0.797 (3)	0.039*
H3N	0.193 (5)	0.7408 (18)	0.844 (3)	0.039*
C2	0.3048 (4)	0.6156 (3)	0.8599 (3)	0.0229 (9)
C3	0.3142 (5)	0.5033 (3)	0.8462 (3)	0.0271 (10)
Н3	0.2366	0.4591	0.8173	0.033*
C4	0.4377 (5)	0.4602 (4)	0.8757 (3)	0.0310 (11)
H4	0.4440	0.3861	0.8658	0.037*
C5	0.5566 (5)	0.5257 (4)	0.9212 (3)	0.0318 (11)
Н5	0.6406	0.4953	0.9406	0.038*
C6	0.5479 (4)	0.6329 (4)	0.9365 (3)	0.0261 (9)
C7	0.6656 (5)	0.7116 (5)	0.9858 (4)	0.0397 (13)
H7A	0.6761	0.7364	1.0396	0.060*
H7B	0.6482	0.7736	0.9478	0.060*
H7C	0.7478	0.6753	1.0016	0.060*
N3	0.1990 (3)	0.6251 (3)	0.5887 (2)	0.0182 (7)
H4N	0.265 (3)	0.621 (4)	0.578 (3)	0.022*
N4	0.2592 (4)	0.4446 (3)	0.6379 (3)	0.0278 (8)
H5N	0.334 (3)	0.457 (4)	0.639 (3)	0.033*
H6N	0.239 (5)	0.379 (2)	0.653 (3)	0.033*
C11	0.1736 (4)	0.5308 (3)	0.6153 (3)	0.0205 (8)
C12	0.0562 (5)	0.5275 (4)	0.6155 (3)	0.0275 (10)
H12	0.0324	0.4632	0.6311	0.033*
C13	-0.0216 (5)	0.6198 (4)	0.5926 (3)	0.0321 (11)
H13	-0.0980	0.6187	0.5938	0.039*
C14	0.0113 (5)	0.7163 (4)	0.5672 (3)	0.0288 (10)
H14	-0.0421	0.7791	0.5527	0.035*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C15	0.1211 (4)	0.7179 (3)	0.5638 (3)	0.0212 (8)
C16	0.1635 (4)	0.8130 (3)	0.5331 (3)	0.0250 (9)
H16A	0.1512	0.7943	0.4776	0.038*
H16B	0.2581	0.8296	0.5781	0.038*
H16C	0.1086	0.8760	0.5239	0.038*
Re1	-0.237586 (16)	0.926025 (12)	0.281334 (11)	0.01677 (4)
Br1	-0.06351 (4)	1.03636 (3)	0.27687 (3)	0.02292 (9)
Br2	-0.38484 (4)	1.09524 (3)	0.23272 (3)	0.02134 (9)
Br3	-0.44110 (4)	0.81224 (3)	0.23999 (3)	0.02152 (9)
Br4	-0.12108 (4)	0.75203 (3)	0.28299 (3)	0.02382 (9)
O1	-0.3328 (3)	0.9120 (2)	0.1355 (2)	0.0197 (6)
O2	-0.1646 (3)	0.9336 (2)	0.3918 (2)	0.0248 (6)
Br5	0.34325 (4)	0.88956 (3)	0.98187 (3)	0.02261 (9)
H1W	-0.324 (5)	0.978 (2)	0.111 (3)	0.027*
H2W	-0.426 (2)	0.897 (4)	0.088 (2)	0.027*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N1	0.0184 (17)	0.0190 (16)	0.027 (2)	-0.0032 (14)	0.0139 (16)	-0.0034 (14)
N2	0.0181 (19)	0.029 (2)	0.041 (3)	-0.0060 (17)	0.0119 (19)	-0.0156 (18)
C2	0.024 (2)	0.025 (2)	0.020 (2)	-0.0060 (18)	0.0128 (19)	-0.0040 (17)
C3	0.035 (3)	0.023 (2)	0.029 (3)	-0.0080 (19)	0.021 (2)	-0.0075 (18)
C4	0.045 (3)	0.022 (2)	0.026 (2)	0.008 (2)	0.021 (2)	-0.0002 (18)
C5	0.026 (2)	0.039 (3)	0.029 (3)	0.014 (2)	0.015 (2)	-0.001 (2)
C6	0.021 (2)	0.037 (2)	0.024 (2)	-0.0022 (19)	0.015 (2)	-0.0027 (19)
C7	0.021 (2)	0.054 (3)	0.047 (3)	-0.012 (2)	0.021 (2)	-0.015 (3)
N3	0.0143 (16)	0.0228 (17)	0.0180 (17)	0.0015 (14)	0.0096 (15)	-0.0032 (13)
N4	0.031 (2)	0.0208 (19)	0.035 (2)	0.0061 (17)	0.0214 (19)	0.0049 (16)
C11	0.024 (2)	0.0206 (19)	0.014 (2)	-0.0007 (17)	0.0095 (18)	0.0008 (15)
C12	0.024 (2)	0.034 (2)	0.028 (3)	-0.0007 (19)	0.017 (2)	0.0030 (19)
C13	0.022 (2)	0.045 (3)	0.037 (3)	0.004 (2)	0.021 (2)	0.006 (2)
C14	0.021 (2)	0.029 (2)	0.034 (3)	0.0073 (19)	0.015 (2)	0.004 (2)
C15	0.022 (2)	0.0206 (19)	0.018 (2)	0.0020 (17)	0.0097 (18)	0.0008 (16)
C16	0.022 (2)	0.0187 (19)	0.027 (2)	0.0003 (17)	0.010 (2)	0.0014 (17)
Re1	0.01591 (7)	0.01429 (7)	0.01882 (8)	0.00079 (6)	0.00933 (6)	0.00002 (6)
Br1	0.0185 (2)	0.01779 (18)	0.0319 (2)	-0.00143 (16)	0.01433 (19)	-0.00067 (16)
Br2	0.0206 (2)	0.01803 (18)	0.0250 (2)	0.00517 (15)	0.01295 (18)	0.00171 (15)
Br3	0.0198 (2)	0.02158 (19)	0.0243 (2)	-0.00228 (16)	0.01344 (18)	0.00220 (16)
Br4	0.0198 (2)	0.01426 (18)	0.0349 (3)	0.00186 (15)	0.01442 (19)	-0.00040 (16)
01	0.0256 (15)	0.0159 (13)	0.0201 (15)	0.0004 (12)	0.0147 (13)	0.0013 (11)
O2	0.0258 (15)	0.0221 (14)	0.0218 (16)	0.0022 (13)	0.0111 (13)	0.0022 (12)
Br5	0.0247 (2)	0.02478 (19)	0.0205 (2)	-0.00570 (17)	0.01438 (18)	-0.00151 (16)

Geometric parameters (Å, °)

N1—C2	1.352 (5)	N4—H5N	0.903 (19)
N1—C6	1.363 (5)	N4—H6N	0.920 (19)
N1—H1N	0.913 (19)	C11—C12	1.411 (6)

N2—C2	1.331 (6)	C12—C13	1.361 (6)
N2—H2N	0.922 (19)	C12—H12	0.9300
N2—H3N	0.915 (19)	C13—C14	1.399 (6)
C2—C3	1.404 (6)	C13—H13	0.9300
C3—C4	1.354 (6)	C14—C15	1.354 (6)
С3—Н3	0.9300	C14—H14	0.9300
C4—C5	1.410 (7)	C15—C16	1.496 (6)
C4—H4	0.9300	C16—H16A	0.9600
C5—C6	1.349 (6)	C16—H16B	0.9600
С5—Н5	0.9300	C16—H16C	0.9600
C6—C7	1.498 (6)	Re1—O2	1.667 (3)
С7—Н7А	0.9600	Re1—O1	2.206 (3)
С7—Н7В	0.9600	Re1—Br3	2.5117 (6)
С7—Н7С	0.9600	Re1—Br2	2.5141 (6)
N3—C11	1.347 (5)	Re1—Br1	2.5223 (5)
N3—C15	1.363 (5)	Re1—Br4	2.5254 (6)
N3—H4N	0.920 (19)	O1—H1W	0.948 (19)
N4—C11	1.354 (5)	O1—H2W	0.955 (19)
C2—N1—C6	124.7 (4)	C13—C12—C11	118.9 (4)
C2—N1—H1N	113 (3)	C13—C12—H12	120.6
C6—N1—H1N	122 (3)	C11—C12—H12	120.6
C2—N2—H2N	124 (3)	C12—C13—C14	121.2 (4)
C2—N2—H3N	118 (3)	C12—C13—H13	119.4
H2N—N2—H3N	118 (4)	C14—C13—H13	119.4
N2—C2—N1	118.4 (4)	C15—C14—C13	119.7 (4)
N2—C2—C3	124.3 (4)	C15-C14-H14	120.2
N1—C2—C3	117.3 (4)	C13—C14—H14	120.2
C4—C3—C2	119.2 (4)	C14—C15—N3	118.1 (4)
С4—С3—Н3	120.4	C14—C15—C16	125.4 (4)
С2—С3—Н3	120.4	N3—C15—C16	116.5 (4)
C3—C4—C5	121.1 (4)	C15-C16-H16A	109.5
C3—C4—H4	119.5	C15-C16-H16B	109.5
C5—C4—H4	119.5	H16A—C16—H16B	109.5
C6—C5—C4	119.6 (4)	C15—C16—H16C	109.5
С6—С5—Н5	120.2	H16A—C16—H16C	109.5
C4—C5—H5	120.2	H16B—C16—H16C	109.5
C5—C6—N1	118.1 (4)	O2—Re1—O1	178.68 (12)
C5—C6—C7	125.6 (4)	O2—Re1—Br3	97.54 (10)
N1—C6—C7	116.4 (4)	O1—Re1—Br3	82.06 (8)
С6—С7—Н7А	109.5	O2—Re1—Br2	98.64 (10)
С6—С7—Н7В	109.5	O1—Re1—Br2	82.62 (7)
H7A—C7—H7B	109.5	Br3—Re1—Br2	88.99 (2)
С6—С7—Н7С	109.5	O2—Re1—Br1	98.28 (10)
Н7А—С7—Н7С	109.5	O1—Re1—Br1	82.12 (8)
Н7В—С7—Н7С	109.5	Br3—Re1—Br1	164.174 (16)
C11—N3—C15	124.7 (3)	Br2—Re1—Br1	88.83 (2)
C11—N3—H4N	116 (3)	O2—Re1—Br4	97.56 (10)
C15—N3—H4N	119 (3)	O1—Re1—Br4	81.18 (7)
C11—N4—H5N	116 (3)	Br3—Re1—Br4	88.71 (2)

supplementary materials

C11—N4—H6N	118 (3)	Br2—Re1—Br4	163.793 (16)
H5N—N4—H6N	125 (4)	Br1—Re1—Br4	89.02 (2)
N3—C11—N4	118.5 (4)	Re1—O1—H1W	112 (3)
N3—C11—C12	117.4 (4)	Re1—O1—H2W	129 (3)
N4	124.1 (4)	H1W—O1—H2W	97 (4)
C6—N1—C2—N2	-179.4 (4)	C15—N3—C11—N4	179.7 (4)
C6—N1—C2—C3	0.2 (6)	C15—N3—C11—C12	1.5 (6)
N2-C2-C3-C4	178.0 (4)	N3-C11-C12-C13	-2.6 (6)
N1—C2—C3—C4	-1.6 (6)	N4-C11-C12-C13	179.2 (4)
C2—C3—C4—C5	1.2 (7)	C11-C12-C13-C14	1.4 (7)
C3—C4—C5—C6	0.6 (7)	C12-C13-C14-C15	1.1 (7)
C4-C5-C6-N1	-2.0 (7)	C13-C14-C15-N3	-2.2 (7)
C4—C5—C6—C7	178.3 (5)	C13-C14-C15-C16	176.5 (4)
C2—N1—C6—C5	1.6 (6)	C11—N3—C15—C14	1.0 (6)
C2—N1—C6—C7	-178.7 (4)	C11—N3—C15—C16	-177.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1N···Br5	0.92 (3)	2.54 (5)	3.354 (4)	148 (5)
O1—H1W…Br5 ⁱ	0.95 (4)	2.25 (4)	3.176 (3)	165 (4)
N2—H2N…Br1 ⁱⁱ	0.92 (5)	2.76 (5)	3.573 (5)	148 (4)
N2—H2N…Br4 ⁱⁱ	0.92 (5)	2.91 (5)	3.424 (6)	117 (4)
O1—H2W…Br5 ⁱⁱⁱ	0.95 (3)	2.28 (3)	3.225 (4)	170 (4)
N2—H3N····Br5	0.92 (2)	2.75 (4)	3.514 (4)	141 (3)
N3—H4N…Br5 ^{iv}	0.92 (5)	2.42 (5)	3.273 (4)	154 (4)
N4—H5N…Br2 ^v	0.90 (5)	2.83 (5)	3.592 (6)	143 (4)
N4—H6N····Br4 ^{vi}	0.92 (4)	2.79 (5)	3.647 (5)	155 (5)

Symmetry codes: (i) -x, -y+2, -z+1; (ii) x, -y+3/2, z+1/2; (iii) x-1, y, z-1; (iv) x, -y+3/2, z-1/2; (v) x+1, -y+3/2, z+1/2; (vi) -x, -y+1, -z+1.

Fig. 1

Fig. 2

